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This study involves a numerical simulation of spatially evolving secondary instability 
in plane channel flow. The computational algorithm integrates the time-dependent, 
three-dimensional, incompressible Navier-Stokes equations by a mixed finite- 
differencelspectral technique. In particular, we are interested in the differences between 
instabilities instigated by Klebanoff (K-) type and Herbert (H-) type inflow conditions, 
and in comparing the present spatial results with previous temporal models. It is found 
that for the present inflow conditions, H-type instability is biased towards one of the 
channel walls, while K-type instability evolves on both walls. For low initial 
perturbation amplitudes, H-type instability exhibits higher growth rates than K-type 
instability while higher initial amplitudes lead to comparable growth rates of both H- 
and K-type instability. In H-type instability, spectral analysis reveals the presence of 
the subharmonic two-dimensional mode which promotes the growth of the three- 
dimensional spanwise and fundamental modes through nonlinear interactions. An 
intermodal energy transfer study demonstrates that there is a net energy transfer from 
the three-dimensional modes to the two-dimensional mode. This analysis also indicates 
that the mean mode transfers net energy to the two-dimensional subharmonic mode 
and to the three-dimensional modes. 

1. Introduction 
Secondary instability in wall-bounded shear flows was first identified in the 

boundary-layer experiments of Klebanoff, Tidstrom & Sargent (1962), in which a 
vibrating ribbon was used to create disturbances in the form of initially two- 
dimensional Tollmien-Schlichting (T-s) waves that amplify (or decay) as they travel 
downstream. Klebanoff et al. (1  962) observed that the ribbon-induced disturbances 
develop into three-dimensional A-shaped structures (A-vortices) arranged in a 
distinctive pattern periodic in x and z,  i.e. repeating from (x, z )  + (x + A,, z + A,) ; here, 
x and z represent the streamwise and spanwise coordinates, respectively, and A, and A, 
are the corresponding fundamental wavelengths of the disturbances. This type of 
secondary instability is known as K-type (Klebanoff-type) or fundamental instability. 
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More recently, in his theoretical studies Herbert (1983 a, b)  found that high-amplitude, 
two-dimensional disturbances lead to K-type instability, while low-amplitude, two- 
dimensional disturbances promote a subharmonic secondary instability. The existence 
of the latter, which is also referred to as H-type (Herbert-type) instability, was 
confirmed by experimental observations in boundary layers (Kachanov, Kozlov & 
Levchenko 1978; Kachanov & Levchenko 1984; Saric, Kozlov & Levchenko 1984) and 
is characterized by the staggered arrangement of the A-vortices, i.e. a pattern which is 
invariant to coordinate transformations of the type (x, z )  --f (x + 2 4 ,  z + Az). In channel 
flow experiments, although K-type instability was observed to evolve naturally 
(Nishioka, Iida & Ichikawa 1975; Nichioka, Asai & Iida 1980, 1981; Kozlov & 
Ramazanov 1984), H-type instability was obtained only in the presence of a forced 
subharmonic disturbance (Ramazanov 1985). 

The evolutionary characteristics of the two types of secondary instability have been 
examined through numerical simulations of both boundary-layer and channel flows. 
Several review articles (Herbert 1991; Kleiser & Zang 1991) contain a summary of 
previous computational work. In the majority of these simulations, a two-dimensional 
disturbance wave and a three-dimensional oblique wave pair were used as the inflow 
conditions for spatial models or as initial conditions for temporal models. One of the 
interesting characteristics of secondary instability in channel flows is the biased 
initiation of transition towards one wall in H-type instability in contrast to the 
concurrent activity at both walls in K-type instability (Herbert 1983a; May & Kleiser 
1985; Singer, Ferziger & Reed 1987; Singer, Reed & Ferziger 1989). In their temporal 
boundary-layer simulations, Laurien & Kleiser (1989) compared H- and K-type 
instability, each excited by a low-amplitude (1.5 % of the free-stream velocity) two- 
dimensional T-S wave and an oblique wave pair with a combined amplitude of 0.1 %. 
They observed that under these conditions the inception of K-type instability was 
delayed in comparison with H-type, however H-type instability was not as strong as K- 
type. Similarly, in the temporal simulations of Zang & Hussaini (1985) and Krist & 
Zang (1987), H-type instability in plane channel flow was weaker than K-type under 
various initial conditions, i.e. for different amplitudes of the two- and three- 
dimensional initial disturbances, different Reynolds numbers, and different spanwise 
and streamwise wavenumbers of the initial perturbation waves. 

One of the issues surrounding computational studies of stability and transition 
involves the temporal versus spatial approach. Temporal models use a computational 
‘box’ which travels with the phase speed of the T-S wave following a single wavelength 
of the disturbance as it evolves in time. This model permits periodicity in the 
streamwise direction, thus avoiding the outflow boundary condition problem and 
enables the use of available computer memory to resolve one wavelength. This issue is 
especially important for boundary-layer calculations where non-parallel effects, e.g. 
streamwise growth, are neglected in temporal studies. In channel flows, because the 
base flow remains parallel, there is less of a controversy and the temporal approach 
simply represents a different type of ‘initial’ condition. Consequently, for channel 
flows temporal models obtained good results for the simulation of transition into 
secondary instability and the breakdown stage (Orszag & Kells 1980; Kleiser 1982; 
Orszag & Patera 1983; Biringen 1984, 1987, 1990; Kleiser & Schumann 1984; May & 
Kleiser 1985; Zang & Hussaini 1985; Krist & Zang 1987; Asai & Nishioka 1989). 
However, in experiments on forced transition, disturbances are generated by a vibrating 
ribbon which exhibits spatial instability, and therefore spatial simulations offer direct 
comparisons between computations and experiments (Fasel 1989). The effects of 
temporal versus spatial computational models on the simulation of secondary 
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instability in channel flows have not been documented to date. Although two- 
dimensional spatial simulations have been performed previously (Fasel & Bestek 1980 ; 
Patera 1984), to our knowledge the present work is the first spatial simulation of 
secondary instability in plane channel flow. 

The present computational study involves an investigation of the differences between 
H- and K-type secondary instability in plane channel flow using a spatial mathematical 
model. To instigate the two types of instability, a wave triad generated from the spatial 
solutions of the Orr-Sommerfeld equation is imposed at the inflow boundary. 
Comparisons are made between the evolutionary characteristics of the two types of 
instability, and differences and agreements between the present spatial simulations and 
previous temporal simulations are documented. The effects of random initial conditions 
on the spatial development of secondary instability in plane channel flow will be the 
subject of a subsequent paper. 

2. Computational procedure 
The present numerical model integrates the three-dimensional, time-dependent, 

incompressible Navier-Stokes equations and the continuity equation for the 
perturbation quantities. These equations are non-dimensionalized by the channel half 
height, h, and the centreline velocity, U,: 

In (1) and (2), ui = (u’, d,  w’) represents the perturbation velocity components in the 
streamwise (x), normal ( y ) ,  and spanwise ( z )  directions, respectively (figure 1). The 
Reynolds number, Re, is defined as Re = U, hlv,  where v is the kinematic viscosity. The 
perturbation pressure is given asp’ ,  S,, is the Kronecker delta, t is time, and U, is the 
base (laminar) velocity profile defined as 

(3) 

(4) 

Ub(U, ZI, w) = (1 - yZ,O,O). 

ui(x, y = & 1, z ,  t )  = 0,  

At the channel walls the no-slip boundary conditions are imposed so that 

and the inflow conditions are 

u;(x = 0, y ,  z ,  t)  = AZd Re [(uiZd(y)), e-iwr2dt] 

+:A,, Re [(uiia( Y ) ) ~  ei(flz-wr3dt) ] + :A,, Re [(u:;,( y)), ei(fiZ-wr3d t ,  1, ( 5 )  

In ( 5 ) ,  A,, is the amplitude of the two-dimensional perturbation wave and A,, is the 
total amplitude of the three-dimensional oblique wave pair. The complex spatial 
eigcnfunctions, (u:,,), and (u;,,)~, are calculated by solving the Orr-Sommerfeld 
equation using the companion matrix method for a given Reynolds number, real 
spanwise wavenumber, p, and for the real frequencies of the two- and three- 
dimensional waves, wZrd and wQrd, respectively (Danabasoglu & Biringen 1990). The 
eigenfunctions are normalized such that the maximum amplitude of the streamwise 
component is unity with a zero phase shift. Superscripts + and - represent the 
eigenvectors calculated for /3 > 0 and f l <  0, respectively. When w,,, = wrZd, the three- 
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FIGURE 1 .  Schematic of the three-dimensional channel flow geometry. 

dimensional disturbance field evolves into K-type instability and when w , ~ ~  = $,2d, H- 
type instability develops. Also, i = 1/ - 1 and Re indicates the real part of a complex 
number. 

The Navier-Stokes equations are numerically integrated by a time-splitting 
procedure which uses the implicit Crank-Nicolson method on the normal diffusion 
terms and the explicit Adams-Bashforth method on the remaining terms. The 
equations are discretized in space on a non-staggered grid by fourth-order cental finite 
differences in the streamwise direction and by the Chebyshev collocation matrix 
method along the wall-normal direction. The assumption of periodicity in the spanwise 
direction allows the application of fast Fourier transforms. The pressure Poisson 
equation was solved by the capacitance matrix method (Kleiser & Schumann 1984; 
Streett & Hussaini 1986) which transforms the homogeneous Neumann problem into 
a non-homogeneous Dirichlet problem. The discretized Poisson equations were then 
integrated by the tensor product technique (Peltier, Biringen & Chait 1990; Huser & 
Biringen 1992) using matrix decomposition. At the outflow, boundary conditions were 
prescribed to ensure strictly outgoing waves. This was accomplished by appending a 
‘buffer domain’ to the physical domain (the length of the buffer domain was about 
30% of the physical domain) in which the governing equations were modified by 
reducing the streamwise viscous terms, the streamwise perturbation part of the 
convective velocity, and the right-hand side of the pressure Poisson equation to zero 
at the outflow boundary using a smooth coefficient function. Our previous numerical 
experiments have included rigorous testing of this technique demonstrating its 
suitability for use in both high- and low-amplitude wave propagation problems (Streett 
& Macaraeg 1989; Danabasoglu, Biringen & Streett 1990, 1991). The numerical 
scheme requires about 9.3 s of CPU time per time step on the CRAY-2 at NASA 
Langley Research Center for a 509(x) x 41(y) x 32(z) grid. Further details of the 
numerical method and the computer code used in this study are given in Danabasoglu 
(1992). 

3. Results and discussion 
In the present study, the generation of inflow conditions was controlled through the 

variation of the parameters in equation (5). In particular, we examined the effects of 
four different sets of these conditions outlined in table 1 (denoted as cases I-K, I-H, 
II-K, and II-H, where H and K indicate H- and K-type initial conditions, respectively). 
In cases II-H and II-K, we prescribed higher amplitudes and a higher spanwise 
wavenumber for the inflow conditions than in cases I-H and I-K, matching more 
closely the initial conditions used by Zang & Hussaini (1985) in their temporal 
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Case Re 4, A,, O r 2 d  wrSd P 
I-K 5000 2% 0.15% 0.33698 0.33698 f l  
I-H 5000 2% 0.15% 0.33698 0.16849 +1  
11-K 5000 3 Yo 0.2 % 0.33698 0.33698 f 2  
11-H 5000 3 O/O 0.2% 0.33698 0.168 49 i 2  

TABLE 1. Parameters for cases studied. 

Case L, L, Lz Nz Nu Nz A* 4 
I-K 55 2 2R 40 1 41 33 5.5 27c 
I-H 47.5 2 2R 346 41 33 5.5 2R 
11-K 33 2 7c 241 41 33 5.5 n 
11-H 33 2 R 24 1 41 33 5.5 R 

TABLE 2. Mesh resolution used in the calculations. L represents the non-dimensional physical domain 
length, N is the number of grid points, and h is the wavelength in a given direction. 

Case %d a 3 d  

I-K 1.17249 + i0.012 873 1.02570+i0.068456 
I-H 1.17249 + i0.012 873 0.52293 + i0.019 645 
11-K 1.17249 +i0.012873 0.91984 +i0.258 357 
11-H 1.17249 + i0.012 873 0.37243 +iO.O83078 

TABLE 3. Spatial eigenvalues of the Orr-Sommerfeld equation for the parameters given in table 1. aZd 
and aQd are the streamwise wavenumbers of the two- and three-dimensional waves, respectively. 

simulations. Zang & Hussaini (1985) performed their calculations at Re = 5000, 
p = +2, A2,  = 5%, and A,, = 0.1 YO. In comparison, in cases 11-H and 11-K, we 
prescribed Re = 5000, /3 = +_2, A,, = 3 %, and A3, = 0.2%. The choice of the lower 
two-dimensional amplitude in the present simulations was due to the explosive growth 
of both types of instabilities over very short streamwise distances for amplitudes 
greater than A,, = 3 %. In fact, at this Reynolds number, both forced and unforced 
experiments indicate that larger amplitudes are not required for secondary instability 
and the formation of vortical structures. In all of the present simulations, the values 
chosen for Re and w~~ correspond to the experimental conditions of Nishioka et al. 
(1980, 1981). Previous studies (Danabasoglu et al. 1991) have demonstrated that the 
mesh resolutions of the present simulations (given in table 2) are sufficient for accurate 
simulations of secondary instability. The streamwise physical lengths were chosen to 
ensure grid-independent solutions for each configuration. The spatial eigenvalues of 
the two- and three-dimensional disturbances, a,, and aSd, obtained from the 
Orr-Sommerfeld equations are listed in table 3. 

The time step (At) for the simulations was assigned by trial and error by dividing one 
T-S period into 1000 parts to ensure numerical stability and time accuracy. 
Comparison of results for several test cases using smaller time steps proved the 
solutions to be independent of this time step. Upon convergence of the solutions, the 
instantaneous quantities were evaluated at the same phase position of the two- 
dimensional disturbance in time (either at T or iT,  where T is the period of the T-S 
wave) for both H- and K-type instability calculations. 
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FIGURE 2. Contours of w: in the (x,z)-plane near the critical layer, y x 0.85. (a) Case I-K: contour 
levels range from -0.45 to 0.3, L, = 55; (b) Case I-H: contour levels range from -0.95 to 0.4, 
L, = 47.5. The flow direction is from left to right and the spanwise length of the domain is doubled 
to clearly depict the pattern of A-vortices. Solid and dashed contours denote negative and positive 
levels, respectively. 

3.1. Development of vortical structures and the high-shear layer 
In this section we examine the spatial development of the A-vortices and the high-shear 
layer for both H- and K-type instabilities. The discussion presented in 593.1-3.4 is 
confined to cases I-H and I-K; the effects of higher initial amplitudes and larger 
spanwise wavenumbers (cases II-H and II-K) are considered in $3.5. 

In figures 2(a)  and 2(b) ,  spanwise perturbation vorticity (w:) contours in the (x,z)- 
plane close to the critical layer ( y  M 0.85) are displayed. For both types of instability 
these contours reveal the streamwise evolution of the h-vortices. The spanwise length 
of the domain in these figures has been increased to 2 4  in order to clearly depict the 
A-vortex patterns. The distinctive A-shaped footprints can clearly be discerned in the 
characteristic peak-valley splitting (non-staggered pattern) for K-type instability 
(figure 2a) and the staggered pattern of the vortices is manifested in figure 2(b) for H- 
type instability. The growth of H-type instability occurs over a shorter distance and 
attains higher amplitudes than the K-type at comparable x-locations. These results are 
in accordance with previous theoretical studies (Herbert 1983 a,  b) and temporal 
simulations (Spalart & Yang 1987-boundary layers; Singer et al. 1987, 1989- 
channel flows) in which random three-dimensional disturbances and two-dimensional 
eigenfunctions were prescribed as initial conditions allowing the competition of H- and 
K-type modes. Accordingly, low-amplitude two-dimensional disturbances lead to the 
dominance of H-type instability while higher amplitudes lead to the dominance of K- 
type instability. However, in contrast to the present results, previous temporal 
computations (Zang & Hussaini 1985; Krist & Zang 1987; Laurien & Kleiser 1989) on 
forced H- and K-type secondary instability using initial conditions of the type given by 
equation (5) indicate stronger K-type growth regardless of the initial amplitude and 
spanwise wavenumber. 

In figures 3 (a)(i) and 3 (b)(i), instantaneous (U ,  + u') velocity profiles are plotted over 
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FIGURE 3. (a) Case I-K: (i) instantaneous velocity profiles, z = OSA,; (ii) contours of w, in the (x,y)- 
plane, z = OSA,. (b) Case I-H: (i) instantaneous velocity profiles, z = A,; (ii) contours of w, in the (x, 
y)-plane, z = A,. The direction of the flow is from left to right. The instantaneous profiles are plotted 
over the last two T-S wavelengths. Contour levels range from -2.6 to 2.6, and solid and dashed 
contours denote negative and positive levels, respectively. 

the last two T-S wavelengths of the physical domain; the z-locations of these profiles 
correspond to the peak plane, z = OSA,,  for K-type instability and z = A, for H-type 
instability (of course, the definition of the terms ‘peak plane’ and ‘valley plane’ are not 
applicable to H-type instability). For K-type instability, the strong inflexions contained 
in these distributions (figure 3 ai) demonstrate the formation of local high-shear layers 
around y = k0.6, in agreement with the experiments of Nishioka et al. (1980) and with 
previous temporal computations. At the valley plane (z = AJ, the intensity of the 
inflexions diminish and there is no evidence of a high-shear layer. The profiles for H- 
type instability (figure 3 bi) reveal several differences in comparison with the K-type. 
First, the intensity of the high-shear layer (developing at y = +0.6) and the profile 
inflexions at the upper wall are greater than at the lower wall, i.e. the evolution of the 
disturbances is biased toward the upper wall. Second, the shear layer at the upper wall 
extends over the entire two T-S wavelengths in accordance with the generation of a 
subharmonic. Finally, due to the staggered arrangement of the A-vortices in H-type 
instability, strong shear layers exist at spanwise positions other than z = A,. The strong 
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inflexions exhibited by the instantaneous velocity profiles in H-type instability were 
accompanied by strongly distorted signals in the time history of u‘, suggesting the 
occurrence of the incipient spike stage. In K-type instability, the u’ signals were only 
marginally distorted from their initial sinusoidal signature, indicating that H-type 
instability undergoes an earlier breakdown process than the K-type. 

The development of the high-shear layers can also be observed from an examination 
of the contour plots of total spanwise vorticity, wz, at the same spanwise positions as 
in figures 3(a)(i) and 3(b)(i). For K-type instability (figure 3aii), the evolution of the 
shear layer occurs mainly at the peak plane in a manner consistent with previous 
temporal simulations and experimental results. Because of the antisymmetric inflow 
conditions about y = 0, the structures appearing on the upper and lower walls are 180” 
out of phase with each other. In the upstream region of the channel, the contours of 
w, for H-type instability (figure 3bii) are also influenced by this antisymmetry, but the 
vortical structures undergo a sudden intensification and stretching in the vicinity of the 
upper wall. This biased evolution of H-type secondary instability is in accordance with 
Herbert’s secondary instability theory (1983~) and was also captured in the temporal 
channel flow simulations of May & Kleiser (1985). Their work demonstrated that at 
low spanwise wavenumbers (J) disturbances oscillate between the two walls, while at 
high /3-values transition takes place on only one wall. 

3.2. Statistical analysis and mean flow field structures 
Streamwise and normal root-mean-square (r.m.s.) distributions are presented in figures 
4-9. Because the present simulations are spatial, the r.m.s. values are true time averages 
defined as 

where Nt is the number of time steps in one T-S period (or two T-S periods for the H- 
type case) and uk is the mean velocity, 

I 
u:, = - Z u ‘ .  

Nt t 

We also evaluated the shear-stress, m, as 

- 1  
u’u’ = - Z (u’- Uk) (0’ - uk) .  

Nt t 

(7) 

The streamwise distributions of (uims)maz and (u;ms)maz (maximum over y )  at z = OSh, 
are presented in figures 4(a) and 4(b); owing to the spanwise antisymmetry of the w’ 
inflow conditions, (wimJmaz at z = OSh, is zero. For K-type instability (figure 4a), 
( z ~ ~ ~ ~ ) ~ ~ ~  gradually decays while (u~,Jmaz increases to about one and a half times its 
original amplitude. In comparison, the (uim8)maz distribution for H-type instability 
(figure 4b) exhibits the same behaviour, but attains amplitudes about three times 
higher than those of K-type, indicating that breakdown occurs faster in the H-type 
disturbance environment. The r.m.s. variations at a plane where w’ is maximum ( z  = 
0.25h,) are plotted in figures 5 (a) and 5(b). Accordingly, for both types of instability, 
(uims)maz decays until the rapidly growing (wims)maz component reaches comparable 
amplitudes; beyond this point, (uimJmaz begins to increase. 

The variation of the r.m.s. velocity components as a function of the wall-normal 
direction are shown in figures 6-9 for different streamwise locations. The spanwise 
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FIGURE 4. Streamwise distributions of (uims)maz and (u~pLs)maz at z = OSh, (maximum over y) .  
(a) Case I-K; (b )  Case I-H. 
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FIGURE 5. Streamwise distributions of (uimJma2, (u~ms)mu2 and (w~ms)muz at z = 0.25hZ (maximum 
over y) .  (a) Case I-K; (b) Case I-H. 

coordinates correspond to z = OSh, for the uims and vims distributions; the 
distributions of w:ms were obtained at z = 0.25h2. For K-type instability (figure 6a) ,  the 
local maxima of the uim8 profiles increase and their y-locations move toward the 
channel centre as the flow develops downstream. This behaviour may be associated 
with the outward diffusion of spanwise vorticity from the wall due to the motion 
induced by the streamwise vortices, thus resulting in the formation of the high-shear 
layer (Tani 1969). The same type of behaviour is seen at the upper wall for H-type 
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FIGURE 6. Normal distributions of uims at z = 0.5hZ. (a)  Case I-K: A, x = 2.61; B, x = 20.49; C, 
x = 34.24; D, x = 44.55; and E, x = 54.18. (6) Case I-H: A, x = 2.61; B, x = 20.49; C, x = 34.24; 
D, x = 41.11; E, x = 43.45; and F, 45.24. 
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FIGURE 7. Normal distributions of u:,,,~ at z = 0.5h,. (a)  Case I-K: A-E as in figure 6(a); (b) Case 
I-H: A-F as in figure 6(b). 

instability (figure 6b), while at the lower wall there is little growth in the uims 
amplitudes. For both K- and H-type instability, the distributions in figures 7(a)  and 
7 (b) indicate a decrease in (vi,n.Jmaz in the streamwise direction. Downstream, the 
profiles become inflexional, revealing increasing gradients near the walls. Distributions 
of wims are similar to those of uims: in K-type instability, (wimJmaZ increases with x at 
both walls (figure 8a), and in H-type instability, this increase takes place only at 
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(b)  Case I-H: A-F as in figure 6(b) .  
FIGURE 9. Normal distributions of at z = OSh,. (a) Case I-K: A-E as in figure 6(a);  

the upper wall. The locations of however, remain almost invariant which 
supports the idea that it is the spanwise vorticity that is diffused from the wall region, 
i.e. the high-shear layer consists mainly of spanwise vorticity. The normal distributions 
of the shear stress, (a), at z = OSh, are presented in figures 9(a) and 9(b). As 
expected, owing to the transfer of energy from the mean flow to the fluctuating flow, 
maximum amplitudes for this quantity also increase with x. For H-type instability, the 
amplitude increase takes place only at the upper wall, while at the lower wall the 
amplitudes remain relatively constant indicating that the main energy transfer in 
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FIGURE 10. Velocity vectors of the secondary mean flow in the upper half of the channel. Case I-K: 
(a) x = 27.5, vector magnitudes are multiplied by 400; (b) x = 55.0, vector magnitudes are multiplied 
by 50. The direction of the flow is out of the plane of the paper. 
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FIGURE 1 1 .  Velocity vectors of the secondary mean flow in the upper half of the channel. Case I-H: 
(a) x = 27.5, vector magnitudes are multiplied by 800; (b) = 44.69, vector magnitudes are multiplied 
by 50. The direction of the flow is out of the plane of the paper. 

H-type instability is occurring at the upper wall. In rough correspondence with the uims 
distributions, the local maxima of move toward the channel centre in agreement 
with temporal simulations (Biringen 1984). 

The mean secondary flow velocity vectors in several (y,z)-planes are plotted in 
figures 10 and 11. For K-type instability, the doubling of the vortex cells in the 
downstream region at x = 55 is the result of energy transfer to the first spanwise 
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FIGURE 12. Streamwise distributions of Fourier amplitudes at y x 0.85. (a) Case I-K; (b) Case I-H. 
A, (w,  0)  ; B, PI; C, (w, P) ; D, (0 ,  PI; E, (O,O>; F, (0,2P); G, (w,2P) ; H, &, 2P); 1, ( w 3 P )  ; J, Qw, 
3p); and K, ( :w,O).  

harmonic, i.e. p = 2 (figure lob). Two vortex pairs appear initially in H-type instability 
due to the inflow conditions (figure 1 1  a), and as the flow develops downstream, the 
nonlinear interaction of the oblique waves intensifies the vortex cells (figure 11  b). 

3.3. Spectral analysis 
The streamwise variation of the u’ Fourier amplitudes are presented in figures 12(a) 
and 12(b). The u’-velocity was recorded for two periods of the T-S wave in time at 
y = 0.85, and the signals were Fourier transformed in time and in z. Here, we denote 
a mode in the frequency/wavenumber space as a wavevector, k = (mw, np),  where w is 
the T-S frequency and p is the spanwise wavenumber; consequently, for the modes 
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defined below, m = O,!, 1 and n = 0,1,2,3. The amplitude distributions were obtained 
for the primary two-dimensional mode k = (w ,  0), the fundamental mode k = (w ,  p), 
the subharmonic mode k = (&I, p), the spanwise mode k = (0, p), the mean 
perturbation mode k = ( O , O ) ,  the spanwise harmonic modes (0,2/3), (w,2p), ( iw ,  2p), 
(w, 3p) and (&, 3p), and the subharmonic two-dimensional mode Go, 0). The results of 
this analysis for K-type instability (figure 12a) indicate that the primary mode ( ( o , O ) ;  
curve A) decays slowly while the fundamental mode ( ( w , p ) ;  curve C )  grows steadily 
with increasing x. Downstream, the (0,p) mode (curve D) shows rapid growth and its 
amplitude exceeds both the primary and fundamental modes. The appearance of the 
(0,p) mode in K-type instability is an important part of secondary instability theory 
(Herbert 1983 a, b), and because it is not included in the present initial conditions, it has 
to appear due to the nonlinear interaction of the three-dimensional wave pair with the 
two-dimensional wave before secondary instability develops. Zang & Hussaini (1985) 
found that suppression of the (0,p) mode in their forced K-type temporal instability 
simulations stabilized the growth of the (w,  p) mode, and several other studies revealed 
that the strong growth of the (0, p) mode (Kim & Moser 1989) or augmentation of the 
(0,p) amplitude (by the addition of streamwise vortices as in Singer et al. 1987, 1989 
and Konzelmann, Rist & Fasel 1989) will bias the flow towards K-type instability. The 
amplitude of the first spanwise harmonic mode ((0,2p); curve F) exhibits a large 
amplitude increase in accordance with the vortex doubling observed in figure lO(b). 
Figure 12(a) also indicates the existence of latent subharmonic modes (k = (&A p), (&A 
2@), (&, 3p), (&, 0); curves B, H, J, and K) whose amplitudes are relatively lower than 
the other modes. The subharmonic modes are energized by the interaction of the three- 
dimensional modes with the (iw,O) mode which obtains its energy directly from the 
mean mode (see $3.4). The streamwise distribution of the mean perturbation mode ((0, 
0); curve E) for K-type instability demonstrates a sudden dip at x M 33. Downstream 
of this point, the (0,O) amplitude increases and reaches magnitudes comparable to the 
other modes. The (0,O) mode also exhibits similar behaviour for H-type instability 
(figure 12b), but this dip occurs at a location further upstream than in K-type 
instability at x M 19.25. As we will explain later, for both H- and K-type instabilities 
this dip indicates a change in the energy transfer to and from the (0,O) mode. 

The subharmonic mode ( ($w,p ) ;  curve B in figure 12b) in H-type instability follows 
the same trend as the fundamental mode (w,  p) in K-type instability, displaying a steady 
rise in its amplitude. Once the dominant (&J, p) amplitude exceeds the (w,  0) amplitude 
(curve A), the (w,  0) mode begins to oscillate in a manner typically observed during the 
spike stage. The (w,@) and (0,p) modes (curves C and D) exhibit relatively strong 
growth in the H-type case. The growth of the (0,p) mode in H-type instability is 
contrary to the temporal channel simulations of Zang & Hussaini (1985) and Krist & 
Zang (1987) where no contribution from the (0,p) mode is indicated. Given the modes 
that exist in the inflow conditions for the H-type instability simulation, i.e. the caw, 
f p), (w ,  0), and (0,O) modes, it is not likely that the (0, p) mode (or the (0, p) mode) 
will develop through the nonlinear interactions of these waves. However, it is 
interesting to note that the two-dimensional subharmonic mode ( ( iw,  0), curve K) has 
substantial amplitude throughout the domain, and interacts with the subharmonic 
oblique wave pair to produce both the (0, p) and (w,  p) modes. As will be demonstrated 
in the subsequent section, the appearance of the ( i w ,  0) mode in both H- and K-type 
instability from numerical noise is due to direct energy transfer from the mean mode. 

In both types of secondary instability, several three-dimensional modes acquire high 
amplitudes near the inflow boundary and continue to grow downstream. In particular, 
the (0,2p) and (w,2/3) modes (curves F and G in figure 12) in H- and K-type instability 
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are prevalent, and the (w, 3p) mode in K-type (curve I in figure 12a) and the ( i w ,  3p) 
mode in H-type instability (curve J in figure 12b) also obtain relatively high amplitudes. 
The existence of large-amplitude (0,2/3) and (w,2,8) modes for K-type instability is 
caused by energy transfer from the (0,p) and (w,/3) modes which have initially large 
amplitudes. For H-type instability, the (0,2p) and (w,  2/3) modes are excited nonlinearly 
when the oblique waves (initial conditions) reach sufficient amplitude to interact. Each 
of the higher harmonics of (w ,p )  for K-type instability grow gradually as the flow 
evolves downstream, thus indicating a smooth spreading of energy into the 
wavenumber spectrum. In contrast, in H-type instability the amplitudes of the higher 
wavenumbers, ( iw,np) ,  increase in a very different manner. There is a sudden ‘burst’ 
in the energy of these modes in accordance with the volatile nature observed in the H- 
type instability simulation. 

3.4. Nonlinear energy transfer 
The transfer of energy between various modes is also a useful tool to aid in the 
understanding of secondary instability mechanisms. Previous theoretical work 
(Croswell 1985) and temporal simulations (Orszag & Patera 1983; Singer et al. 1987) 
have demonstrated that during secondary instability, for both H- and K-types, the 
transfer of energy is mainly from the (0,O) mode to the three-dimensional modes, (w, 
,!?) and (&,p). The three-dimensional modes then transfer energy into the two- 
dimensional mode (0, 0), and the two-dimensional wave mediates the energy transfer 
between the mean and three-dimensional modes. This process establishes a self- 
sustaining energy feedback loop for secondary instability (Herbert 1988). 

For the present spatial simulations, the intermodal energy transfer mechanisms were 
examined by determining the local nonlinear energy transfer within a wave triad, i.e. 
between three modes, k, k’, and k- k’, in a manner similar to Singer et al. (1987). The 
relation that expresses the spectral nonlinear energy transfer is derived from the 
momentum equation written for the total velocity, 

Equation (9) is first transformed into the frequency-wavenumber, k = (mu, np), 
Fourier space and then multiplied by the complex conjugate, zit(x, y, k), in order to 
form the energy equation. The nonlinear spectral energy transfer is then obtained from 
the convective term of the energy equation: 

The derivation of the convection term in (10) differs from the temporal analysis of 
Singer et al. (1987) in that they transform the momentum equation into the Fourier 
wavenumber space, k = (ma, np), not the frequency-wavenumber space as in the 
present spatial analysis. Therefore, for the temporal case this equation represents the 
rate of nonlinear energy transfer, whereas for the present spatial problem, it represents 
spectral energy transfer to a given frequency. The derivative operator, Li, in (10) is 
defined as 

( l l e c )  

In the present analysis, the effects of pressure on the spectral energy transfer were 
neglected, based upon the results of previous studies (Orszag & Patera 1983 ; Croswell 
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FIGURE 13. Normal distributions of nonlinear spectral energy transfer at x = 49.36. Case I-K: 
(a) A, B, and D as in table 4; (b) C and E as in table 4. 

1985) which demonstrated that the integrated effect of perturbation pressure on 
intermodal energy transfer was zero. Singer et al. (1987) determined that in the early 
stages of their simulations, pressure was important in diffusing energy from the centre 
of the channel to the walls. However, this was a consequence of the initial conditions 
implemented in their simulations ; the three-dimensional disturbances were initiated by 
‘centre modes’, and in the later stages of their simulations, i.e. during the evolution of 
secondary instability, the pressure had a negligible effect on the nonlinear energy 
transfer rates. 

Figures 13 and 14 contain the normal distributions of spectral energy transfer 
between different modes forming a wave triad (listed in table 4) at x = 49.36 and x = 
36.98 for K- and H-type instability, respectively. Note that in these figures the positive 
portions of the distributions indicate energy transfer from k’ and k - k’ to k, while the 
negative portions correspond to energy transfer from k to k’ and k-k. Several 
investigators have normalized these quantities by a local scale based on the energy 
contained in wavenumbers k‘ and k - k‘. While this may yield some useful information, 
it does not provide a direct quantitative comparison of energy transfer between 
different wave triads, i.e. comparisons between various sets of k, k’, and k - k’ could 
not be made unless a global normalization constant was used. Therefore, in the present 
work the spectral energy transfer terms were normalized by an arbitrary global scale. 
Examination of figures 13 and 14 reveals several aspects common to both H- and K- 
type instability. First, the highest energy transfer for each wave triad occurs in regions 
near the critical layer, y = kO.85. In H-type instability, the distributions of the energy 
transfer are mostly biased towards the upper wall, while in K-type instability, the 
distributions are mostly symmetric with respect to y = 0. In figures 13(b) and 14(b) 
there is a net energy transfer from the three-dimensional waves to the two-dimensional 
wave (sets C and E in table 4). It is interesting to note that in H-type instability (figure 
14b), the energy transfer between the two-dimensional wave and the fundamental 
modes (curve C )  takes place at both walls, but the net effect of this activity at the lower 
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FIGURE 14. Normal distributions of nonlinear spectral energy transfer at x = 36.98. Case I-H: 
(a) A, B, and D as in table 4; (b)  C and E as in table 4. 

wall is almost zero. At the upper wall, the distributions indicate transfer mainly to the 
fundamental three-dimensional modes from the two-dimensional mode. However, 
more energy is being fed to the two-dimensional mode from the subharmonic modes 
(curve E) than the energy lost to the fundamental. Hence, there is a net energy gain by 
the two-dimensional mode. Also, as expected the prevalent three-dimensional modes, 
i.e. the k = (+,,$) mode in H-type instability (curves D and E in figure 14) and the 
k = (o,,!?) mode in K-type instability (curves B and C in figure 13), predominantly 
receive and transfer more energy than any of the other three-dimensional modes. The 
energy transfer between the mean and three-dimensional modes in H-type instability 
reaches higher amplitudes than those in the K-type indicating the stronger nature of 
H-type instability. These observations are generally in accordance with previous 
temporal studies (Orszag & Patera 1983; Croswell 1985; Singer et al. 1987). 

Figures 15(a) and 15 (b) display streamwise distributions of the maximum intermodal 
spectral energy transfer. Initially, in both H- and K-type instability, the dominant 
energy transfer occurs between the mean and the two-dimensional mode and the 
energy transfer decreases slowly as the flow develops downstream (the solid and dotted 
lines for Set A in figure 15 a, b). The x-locations where the energy transfer between the 
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FIGURE 15. Streamwise distributions of maximum nonlinear spectral energy transfer. (a) Case I-K; 
(b) Case I-H. Dotted lines denote energy transfer from k and k - k  to k, and solid lines denote 
energy transfer from k to k and k- k’. Sets A-E are defined in table 4. x , Set A; *, Set B; 0, Set 
C; A, Set D; 0, Set E; f, k = ( O , O ) ,  k = (&,O), and k - k  = (-iu,O). 

mean and the two-dimensional mode reaches a minimum closely correspond to the dip 
observed in the amplitude of the perturbation mean mode (curve E in figure 12a, b). 
The transfer of energy between the three-dimensional modes and the (0,O) mode (the 
dotted and solid lines for Sets B and D in figure 15a, b respectively), continuously 
increases and in fact, for H-type instability the energy transfer to the subharmonic 
modes exceeds that from the mean mode to the two-dimensional mode, implying the 
inception of the spike stage. Also, this analysis demonstrates that as the flow develops 
downstream, there is a net energy transfer from the three-dimensional modes to the 
two-dimensional mode as indicated by the dotted and solid lines for Sets C and E in 
figure 15(a, b). Finally, figures 15(a) and 15(b) reveal that the energy obtained by the 
subharmonic two-dimensional mode in both types of instability is transferred from the 
(0,O) mode (the solid line with +). In H-type instability (figure 15 b) the initial energy 
transfer from the (0,O) mode to the (iu, 0) mode increases rapidly as the flow develops 
downstream and its interaction with the oblique modes causes the rapid growth of the 
(0, p) and (w, p) modes (figure 12b). In K-type instability, the magnitude of the ($,-O) 
mode remains small, inhibiting the downstream growth of the subharmonics 
(figure 12a). 
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FIGURE 16. Contours of u: in the (x,  z)-plane near the critical layer, y w 0.85. (a) Case II-K: contour 
levels range from -1.0 to 0.4; (b)  Case II-H: contour levels range from -1.15 to 0.5. The flow 
direction is from left to right, the spanwise length of the domain is doubled in order to depict the 
pattern of A-vortices, and L, = 33. Solid and dashed contours denote negative and positive levels, 
respectively. 

3.5. Eflects of high initial amplitudes and large spanwise wavenumbers 
In figures 16(a) and 16(b), the development of the A-structures in the (x, z)-plane near 
the critical layer for cases II-K and II-H is presented. These figures reveal that with 
higher amplitudes and larger spanwise wavenumber, A-vortices develop with 
comparable strength at the same streamwise location for both H- and K-type initial 
conditions. This development can also be observed in the x-distributions of u' Fourier 
amplitudes (figure 17a, b) which exhibit a strong amplification of the dominant three- 
dimensional mode for each case (i.e. the (:@, /3) mode - curve B, in H-type instability 
and the (o,p) mode - curve C ,  in K-type instability) which eventually exceed the 
amplitude of the two-dimensional (w,  0) mode. The comparable growth rates of the H- 
and K-type disturbances at large p is in accordance with the boundary-layer studies of 
Herbert (1988, 1991) and Spalart & Yang (1987) which suggests that with increasing 
p the differences between the growth rates of H- and K-type instabilities decrease. 
However, the strong amplitude dependency of this phenomenon in channel flows 
revealed in the present study has not been captured by previous temporal models. For 
H-type instability (case 11-H), the flow development is again biased towards the upper 
wall as expected from the large spanwise wavenumber of the initial conditions. 

The Fourier amplitude distributions also reveal a dip in the mean (0,O) perturbation 
mode for both cases, occurring at about the same x-location (curve E in figure 17a, b). 
For high-amplitude H-type instability (case 11-H), the (&I, 0) two-dimensional mode 
and the (0, /?) and (w ,  ,8) three-dimensional modes have strong growth rates similar to 
the low-amplitude case (1-H). For the high-amplitude K-type initial conditions (case 
11-K), the &,O) mode has a higher amplitude and stronger growth rate than in case 
I-K, causing high growth rates of the subharmonic modes. 
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FIGURE 17. Streamwise distributions of Fourier amplitudes at y z 0.85. (a) Case 11-K; (b) Case 11-H. 
A, (w ,O) ;  B, (&,p); C, ( w , p ) ;  D, (0,,8); E, (0,O); F, (0,2p); G, ( ~ 2 p ) ;  H, (h2p); 1, (w,3p) ;  J, (h 
38); and K, (+, 0). 

4. Conclusions 
In this study, the spatial evolution of H- and K-type secondary instability in plane 

channel flow was simulated by numerically integrating the three-dimensional, time- 
dependent, incompressible Navier-Stokes equations. Both types of secondary 
instability were initiated by a wave triad consisting of a two-dimensional T-S wave and 
a three-dimensional oblique wave pair. Comparisons were made between the 
quantitative and qualitative characteristics of the H- and K-type instabilities and 
between spatial and temporal computational approaches. For K-type instability, 
spanwise and normal distributions of uims reveal excellent qualitative and quanti- 
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tative agreement with experiments (Nishioka et al. 1980). The present results also 
demonstrate good qualitative agreement with the flow visualization experiments of 
Ramazanov (1985) for H-type instability. 

For the inflow parameters imposed in these simulations, several interesting features 
were observed. In the nonlinear development stage of H-type instability, the spatial 
evolution of the disturbances was biased towards one wall, instead of simultaneous 
transition on both walls as observed in K-type instability. The biased behaviour in H- 
type instability is in accordance with both theoretical analyses and temporal 
simulations under comparable spanwise wavelengths used in the present work. In the 
current simulations, at low amplitudes of the perturbations, H-type instability 
exhibited higher growth than the K-type. This observation is in contrast to several 
temporal simulations in which H-type instability was found to be weaker than K-type 
regardless of the initial amplitudes and the spanwise wavenumber. At higher initial 
amplitudes, the present simulations revealed that the growth rates of the two types of 
secondary instability were comparable. 

The present spatial simulations also differed from temporal studies in that for H-type 
instability there is a significant increase in the energy of the first spanwise harmonic, 
(0, p), and the fundamental mode, (0, p). These are excited by the nonlinear interactions 
of the (h, +p) oblique modes with the Qo, 0) mode which obtains its energy directly 
from the mean mode. The subharmonic two-dimensional mode is also present in K- 
type instability and also obtains its energy from the mean mode. While its growth rate 
remains small for low-amplitude initial conditions, for high amplitudes it sustains 
significant growth and has a high rate of energy transfer to the subharmonic three- 
dimensional modes as the flow reaches the breakdown stage. A spectral energy analysis 
revealed that energy transfer from the mean to two-dimensional mode goes through a 
minimum which closely corresponds to a dip observed in the amplitude of the (0,O) 
mode. This dip appeared further upstream in H-type instability than in K-type 
instability for low initial amplitudes, while for high initial amplitudes the dip appeared 
at about the same streamwise locations for both types of instability. In agreement with 
previous temporal studies, high energy transfer from the mean to the three-dimensional 
modes and net energy transfer from the three-dimensional modes to the two- 
dimensional mode were observed. 
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